Temperature dependence of the spin torque effect in current-induced domain wall motion

We present an experimental study of domain wall motion induced by current pulses as well as by conventional magnetic fields at temperatures between 2 and 300 K in a 110 nm wide and 34 nm thick Ni80Fe20 ring. We observe that, in contrast with field-induced domain wall motion, which is a thermally act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2006-07, Vol.97 (4), p.046602-046602, Article 046602
Hauptverfasser: Laufenberg, M, Bührer, W, Bedau, D, Melchy, P-E, Kläui, M, Vila, L, Faini, G, Vaz, C A F, Bland, J A C, Rüdiger, U
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an experimental study of domain wall motion induced by current pulses as well as by conventional magnetic fields at temperatures between 2 and 300 K in a 110 nm wide and 34 nm thick Ni80Fe20 ring. We observe that, in contrast with field-induced domain wall motion, which is a thermally activated process, the critical current density for current-induced domain wall motion increases with increasing temperature, which implies a reduction of the spin torque efficiency. The effect of Joule heating due to the current pulses is measured and taken into account to obtain critical fields and current densities at constant sample temperatures. This allows for a comparison of our results with theory.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.97.046602