Consumption of milk from transgenic goats expressing human lysozyme in the mammary gland results in the modulation of intestinal microflora
Lysozyme is a key antimicrobial component of human milk that has several health-promoting functions including the development of a healthy intestinal tract. However, levels of lysozyme in the milk of dairy animals are negligible. We have generated transgenic dairy goats that express human lysozyme (...
Gespeichert in:
Veröffentlicht in: | Transgenic research 2006-08, Vol.15 (4), p.515-519 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lysozyme is a key antimicrobial component of human milk that has several health-promoting functions including the development of a healthy intestinal tract. However, levels of lysozyme in the milk of dairy animals are negligible. We have generated transgenic dairy goats that express human lysozyme (HLZ) in their milk in an attempt to deliver the benefits of human milk in a continual fashion. To test the feasibility of this transgenic approach to achieve a biological impact at the level of the intestine, feeding trials were conducted in two animal models. Pasteurized milk from HLZ transgenic animals was fed to both kid goats (ruminant model) and young pigs (human model), and the numbers of total coliforms and Escherichia coli present in the small intestine were determined. Data from this proof-of-principle study demonstrate that milk from transgenic animals was capable of modulating the bacterial population of the gut in both animal models. Pigs that consumed pasteurized milk from HLZ transgenic goats had fewer numbers of coliforms and E. coli in their intestine than did those receiving milk from non-transgenic control animals. The opposite effect was seen in goats. Milk from these transgenic animals not only represent one of the first transgenic food products with the potential of benefiting human health, but are also a unique model to study the development and role of intestinal microflora on health, well-being and resistance to disease. |
---|---|
ISSN: | 0962-8819 1573-9368 |
DOI: | 10.1007/s11248-006-0014-3 |