Enhanced bone ingrowth into hydroxyapatite with interconnected pores by Electrical Polarization
Hydroxyapatite (HA) ceramics are used as implants to repair damaged/removed bone, and negative or positive electrical polarization enhances osteoblast and decreases osteoclast activity, respectively, in vivo. We compared the ability of electrically polarized and non-polarized HA with interconnected...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2006-11, Vol.27 (32), p.5572-5579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydroxyapatite (HA) ceramics are used as implants to repair damaged/removed bone, and negative or positive electrical polarization enhances osteoblast and decreases osteoclast activity, respectively, in vivo. We compared the ability of electrically polarized and non-polarized HA with interconnected pores (IPHA) implants to promote bone growth. Polarized or non-treated IPHAs were implanted into the right or left femoral condyle of rabbits (
N=10 in each group), and we performed histological examination, including enzymatic staining for osteoblasts and osteoclasts, 3 and 6 weeks after implantation. We observed improved bone ingrowth and increased osteoblast activity in polarized implants with complete bone penetration into polarized implants occurring as early as 3 weeks after surgery. In contrast, non-polarized implants were not fully ossified at 6 weeks after surgery. Furthermore, positively charged implant regions had decreased osteoclast activity compared to negatively charged or uncharged regions. We propose two different models to explain these observations. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2006.07.007 |