Complex behavior in driven unidirectionally coupled overdamped Duffing elements
It is well known that overdamped unforced dynamical systems do not oscillate. However, well-designed coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations (corresponding to transitions between the stable steady states of each nonlinear element) when a...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-06, Vol.73 (6 Pt 2), p.066121-066121, Article 066121 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that overdamped unforced dynamical systems do not oscillate. However, well-designed coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations (corresponding to transitions between the stable steady states of each nonlinear element) when a control parameter exceeds a threshold value. In recent publications [A. Bulsara, Phys. Rev. E 70, 036103 (2004); V. In, ibid. 72, 045104 (2005)], we demonstrated this behavior in a specific prototype system, a soft-potential mean-field description of the dynamics in a hysteretic "single-domain" ferromagnetic sample. These oscillations are now finding utility in the detection of very weak "target" magnetic signals, via their effect on the oscillation characteristics--e.g., the frequency and asymmetry of the oscillation wave forms. We explore the underlying dynamics of a related system, coupled bistable "standard quartic" dynamic elements; the system shows similarities to, but also significant differences from, our earlier work. dc as well as time-periodic target signals are considered; the latter are shown to induce complex oscillatory behavior in different regimes of the parameter space. In turn, this behavior can be harnessed to quantify the target signal. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.73.066121 |