Increased spinal excitability does not offset central activation failure
We hypothesized that if reduced spinal excitability contributes to central activation failure, then a caffeine-induced increase in spinal excitability would enhance postfatigue maximal voluntary activation and maximal voluntary contraction (MVC). Ten male volunteer subjects attended two laboratory s...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2006-08, Vol.173 (3), p.446-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We hypothesized that if reduced spinal excitability contributes to central activation failure, then a caffeine-induced increase in spinal excitability would enhance postfatigue maximal voluntary activation and maximal voluntary contraction (MVC). Ten male volunteer subjects attended two laboratory sessions separated by at least 1 week. Contractile and electrical properties were assessed before, and 1 h after oral administration of caffeine (6 mg/kg) or placebo (all-purpose flour), and again following a fatigue protocol. The slope of the H reflex recruitment curve, normalized to that of the M wave (H(slp)/M(slp)), was used to estimate spinal excitability. Maximal voluntary activation was assessed using maximal EMG (EMG(max)) and twitch interpolation. Postfatigue, MVC torque declined (P |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-006-0383-0 |