Propofol attenuates Kupffer cell activation during hypoxia-reoxygenation

We undertook a study to determine whether propofol may attenuate Kupffer cell (KC) activation, thus protecting the cells against hypoxia-reoxygenation injury through the modulation of intracellular calcium ([Ca2+]i). [Ca2+]i, the expression of tumour necrosis factor (TNF)-alpha mRNA, and KC viabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of anesthesia 2005-11, Vol.52 (9), p.921-926
Hauptverfasser: SUNG, Eon-Gi, JEE, Daelim, SONG, In-Hwan, KIM, Hee-Sun, JAE HOON BAE, PARK, Se-Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We undertook a study to determine whether propofol may attenuate Kupffer cell (KC) activation, thus protecting the cells against hypoxia-reoxygenation injury through the modulation of intracellular calcium ([Ca2+]i). [Ca2+]i, the expression of tumour necrosis factor (TNF)-alpha mRNA, and KC viability were measured in response to hypoxia-reoxygenation following pretreatment with propofol 0.5 and 5 microg.mL(-1) (Groups P1 and P2, respectively) or without propofol (Group HRC). KCs were isolated and cultured from male Sprague-Dawley rats. KCs were incubated under an atmosphere of hypoxia (95% N2 + 5% CO2) for 60 min with subsequent 120 min reoxygenation (95% air + 5% CO2). [Ca2+]i for the first 12 min after reoxygenation, TNF-alpha mRNA, and KC viability at the end of reoxygenation in groups P1 and P2 were compared with those of HRC. The increase of [Ca2+]i from the baseline was attenuated in P1 (96.6 +/- 6.9%) and P2 (96.1 +/- 5.4%) compared with HRC (143.8 +/- 11.5%), (P < 0.001), with no difference between P1 and P2. The expression of TNF-alpha mRNA increased only in HRC during hypoxia-reoxygenation. KC viability increased in P1 (97.5 +/- 2.6%) and P2 (94.6 +/- 2.9%), compared with HRC (89.9 +/- 1.4%), (P < 0.005), with no difference between P1 and P2. The results indicate that propofol attenuates KC activation and protects KC from hypoxia-reoxygenation injury at clinically relevant concentrations. This attenuation seems to result from inhibition of [Ca2+]i increase in KC.
ISSN:0832-610X
1496-8975
DOI:10.1007/bf03022052