Fast Small Molecule Similarity Searching with Multiple Alignment Profiles of Molecules Represented in One-Dimension
Multiple sequence alignment has proven to be a powerful method for creating protein and DNA sequence alignment profiles. These profiles of protein families are useful tools for identifying conserved motifs, such as the catalytic triad of the serine protease family or the seven transmembrane helices...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2005-11, Vol.48 (22), p.6980-6990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple sequence alignment has proven to be a powerful method for creating protein and DNA sequence alignment profiles. These profiles of protein families are useful tools for identifying conserved motifs, such as the catalytic triad of the serine protease family or the seven transmembrane helices of the G-protein coupled receptor family. Ultimately, the understanding of the critical motifs within a family is useful for identifying new members of the family. Due to the complexity of protein−ligand recognition, no universally accepted method exists for clustering small molecules into families with the same or similar biological activity. A combination of the concept of multiple sequence alignment and the 1-dimensional molecular representation described earlier offers a new method for profiling sets of small molecules with the same biological activity. These small molecule profiles can isolate key commonalties within the set of bioactive compounds much like a multiple sequence alignment can isolate critical motifs within a protein family. The small molecule profiles then make useful tools for searching small molecule databases for new compounds with the same biological activity. The technique is demonstrated here using the human ether-a-go-go potassium channel and the kinase SRC. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm050563r |