A newly modified SCG10 promoter and Cre loxP-mediated gene amplification system achieve highly specific neuronal expression in animal brains
We designed a new promoter that drives transgene expression in an exclusively neuron-specific manner. The promoter of superior cervical ganglion10 (SCG10), expressed in neurons, was further modified to enhance its neuron specificity and activity by changing its length and fusing a multiple neuronal...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2006-08, Vol.13 (16), p.1244-1250 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We designed a new promoter that drives transgene expression in an exclusively neuron-specific manner. The promoter of superior cervical ganglion10 (SCG10), expressed in neurons, was further modified to enhance its neuron specificity and activity by changing its length and fusing a multiple neuronal restrictive silencer element (NRSE) to its upstream or downstream regions. The promoter, which contained 2 kb original promoter length and two extra NRSEs in its downstream region, eventually exhibited remarkable neuron specificity as well as strong activity. To further amplify the promoter activity, the promoter was introduced into a Cre recombinase (Cre)-expressing adenovirus, and subsequent combination with Cre-inducible enhanced green fluorescence protein (EGFP)-expressing adenovirus vector, which has much stronger general promoter, resulted in a remarkably strong gene expression exclusively in neuronal cells of mixed cultures and in an animal model. This system is also applicable to astrocyte-specific expression; for instance, by changing the Cre promoter cassette to an astrocyte-specific promoter. The present relatively compact promoter combined with Cre/loxP system could be useful for a wide range of transgene experiments
in vivo
as well as for clinical applications. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/sj.gt.3302779 |