Identification of IS elements in Acidithiobacillus ferrooxidans strains grown in a medium with ferrous iron or adapted to elemental sulfur
IS elements were identified in the genomes of five Acidithiobacillus ferrooxidans strains isolated from various media. IST2 elements were revealed in all the strains grown in a medium with ferrous iron, ISAfe1 elements were detected in four strains (TFBk, TFL-2, TFV-1 and TFO). Three strains (TFV-1,...
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2005-09, Vol.183 (6), p.401-410 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IS elements were identified in the genomes of five Acidithiobacillus ferrooxidans strains isolated from various media. IST2 elements were revealed in all the strains grown in a medium with ferrous iron, ISAfe1 elements were detected in four strains (TFBk, TFL-2, TFV-1 and TFO). Three strains (TFV-1, TFN-d and TFO) were found to contain IS elements, ~600 bp long. These were named preliminary as ISAfe600. Partial sequencing of the 5'- and 3'-terminal nucleotide stretches of an ISAfe1 element in TFBk and TFL-2 strains and complete sequencing of the ISAfe1 element in the TFBk strain has revealed nucleotide substitutions as compared to the prototype, i.e., the ISAfe1 element of an ATCC 19859 strain. Partial sequencing of the 5'- and 3'-terminal nucleotide stretches of the IST2 elements in TFO, TFBk and TFL-2 strains has shown numerous nucleotide substitutions when compared to the IST2 element of an ATCC 19859 strain. Complete sequencing of the IST2 element in the TFBk strain has revealed: the divergence between the IST2 elements in the TFBk strain and the prototype was 21.2%. Southern hybridization of EcoRI fragments of the chromosomal DNA from five A. ferrooxidans strains grown in a medium with ferrous iron using an internal region of ISAfe1, a full-length ISAfe1 or a full-length IST2 as probes has shown them to differ in the number of copies of IS elements and their localization on the chromosomes. Adaptation to elemental sulfur in A. ferrooxidans strains caused changes in the number, intensity and localization of hybridization bands. The authors discuss the role of IS elements in the adaptation of A. ferrooxidans to the new energy substrate. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-005-0010-7 |