Sildenafil inhibits β-adrenergic-stimulated cardiac contractility in humans

Sildenafil inhibits phosphodiesterase 5 (PDE5A) to elevate intracellular cGMP and to induce vasodilation. This effect has led to its use for treating erectile dysfunction. Although its influence on rest heart function has appeared minimal, recent animal studies suggest that sildenafil can have poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2005-10, Vol.112 (17), p.2642-2649
Hauptverfasser: BORLAUG, Barry A, MELENOVSKY, Vojtech, MARHIN, Tricia, FITZGERALD, Patricia, KASS, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sildenafil inhibits phosphodiesterase 5 (PDE5A) to elevate intracellular cGMP and to induce vasodilation. This effect has led to its use for treating erectile dysfunction. Although its influence on rest heart function has appeared minimal, recent animal studies suggest that sildenafil can have potent effects on hearts stimulated by beta-adrenergic or pressure overloads. We therefore tested whether sildenafil blunts dobutamine-stimulated cardiac function in humans. Thirty-five healthy volunteers underwent a randomized, double-blind, placebo-controlled study in which cardiac function was assessed in response to dobutamine before and after oral sildenafil (100 mg, n=19) or placebo (n=16). Echo Doppler and noninvasive blood pressure data yielded load-independent contractility indexes (maximal power index and end-systolic elastance), ejection fraction, and measures of diastolic function. In the initial dobutamine test, systolic and diastolic function improved similarly in both treatment groups (eg, peak power index rose 80+/-28% in the placebo group and 82+/-31% in the sildenafil group; P=NS). However, in subjects who then received sildenafil, their second dobutamine response was significantly blunted, with peak power, ejection fraction, and end-systolic elastance changes reduced by 32+/-34%, 66+/-64%, and 56+/-63%, respectively (each P
ISSN:0009-7322
1524-4539
DOI:10.1161/CIRCULATIONAHA.105.540500