NGF and IL-1beta are co-localized in the developing nervous system of the frog, Xenopus laevis
NGF, a neurotrophic factor best known for its role in promoting cell survival, regulates many neurodevelopmental processes, including synaptic plasticity, neurite outgrowth and programmed cell death. Although there is a large amount of data regarding NGF in the developing nervous system of many spec...
Gespeichert in:
Veröffentlicht in: | International journal of developmental neuroscience 2005-11, Vol.23 (7), p.575-586 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NGF, a neurotrophic factor best known for its role in promoting cell survival, regulates many neurodevelopmental processes, including synaptic plasticity, neurite outgrowth and programmed cell death. Although there is a large amount of data regarding NGF in the developing nervous system of many species, there is little known about its regulation and role in the frog, Xenopus laevis. In this report, immunocytochemistry was used to characterize NGF protein expression in developing tadpoles. Protein expression was analyzed in tadpoles from stage 44/45 through stage 50, a period of development characterized by extensive neurite outgrowth, neuronal differentiation and an initial period of programmed cell death. Similar to other species, NGF was expressed in sensory cells and tissues, including the inner ear, eye, olfactory system, lateral line organs, papillae in the oral cavity, and gills tufts. In addition, NGF was expressed in specific cells in the central nervous system, cranial and dorsal root ganglia, spinal sensory and motoneurons, and muscle tissues in the tail and body cavity. In the mammalian nervous system, the cytokine, interleukin-1beta (IL-1beta) induces expression of NGF. In this report, double-label immunocytochemistry was used to determine the relationship between NGF and IL-1beta. Results showed most cell types and/or tissues that expressed NGF also expressed IL-1beta. However, NGF was typically associated with cellular and nuclear membranes, whereas IL-1beta appeared in the cytoplasm and nucleolus. The nuclear localization of IL-1beta supports the idea that it regulates gene transcription in the frog. The appearance of NGF and IL-1beta in the same cells suggests they may interact to influence neural development. |
---|---|
ISSN: | 0736-5748 |