Down-regulation of estrogen receptor-α in MCF-7 human breast cancer cells after proteasome inhibition
The eukaryotic proteasome is a 26S ATP-dependent proteolytic complex, which possesses chymotrypsin-like, trypsin-like and peptidyl glutamyl peptide hydrolase (PGPH) activities, which enable the proteasome to degrade all short-lived and many long-lived proteins, and consequently regulate a myriad of...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2006-08, Vol.72 (5), p.566-572 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The eukaryotic proteasome is a 26S ATP-dependent proteolytic complex, which possesses chymotrypsin-like, trypsin-like and peptidyl glutamyl peptide hydrolase (PGPH) activities, which enable the proteasome to degrade all short-lived and many long-lived proteins, and consequently regulate a myriad of activities in cells. In this study, we observed that inhibition of the proteasome, and more specifically, inhibition of the chymotrypsin-like activity of the proteasome, in MCF-7 human breast cancer cells resulted in selective down-regulation of the nuclear estrogen receptor-α (ERα). Our data indicated that estrogen had no effect, whereas the ERα antagonist, tamoxifen, reduced the amount of ERα that could be subjected to down-regulation after proteasome inhibition. Furthermore, our data demonstrated that protein synthesis was required for the down-regulation of ERα to occur. Collectively, these data indicate the existence of a proteasome-dependent mechanism that is utilized by MCF-7 cells to maintain a steady-state level of ERα. |
---|---|
ISSN: | 0006-2952 1873-2968 |
DOI: | 10.1016/j.bcp.2006.05.012 |