Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin
Direct conjugation of histidine to poly(2-hydroxyethyl aspartamide) (PHEA–His) and C 18-grafted PHEA (PHEA-g-C 18–His) was achieved via an ester linkage using N α-Boc- l-histidine, followed by the deprotection of Boc groups. PHEA–His series would be expected as an endosomolytic synthetic polymer bec...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2006-08, Vol.114 (1), p.60-68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Direct conjugation of histidine to poly(2-hydroxyethyl aspartamide) (PHEA–His) and C
18-grafted PHEA (PHEA-g-C
18–His) was achieved via an ester linkage using
N
α-Boc-
l-histidine, followed by the deprotection of Boc groups. PHEA–His series would be expected as an endosomolytic synthetic polymer because of the buffering capacity at physiological and endosomal pH regulated by α-amine and imidazole groups in side chains. PHEA-g-C
18–His series formed stable self-aggregates due to the hydrophobic interaction between grafted alkyl chains. The size, zeta potential, and micropolarity of PHEA-g-C
18–His series greatly increased at pH
5.0, because aggregates swelled by a positive surface charge and the electrostatic repulsion of ionized histidine moieties in the aggregate surface. In the confocal microscopy, it was revealed that PHEA-g-C
18–His was more uniformly distributed than PHEA-g-C
18 in HeLa cells after 8
h of incubation and was attributed to the endosomolytic ability of conjugated histidine moieties. In doxorubicin-loaded self-aggregate systems, the histidine conjugation improved the cell cytotoxicity by a fast release of loaded doxorubicin at low pH and the endosomolytic ability of conjugated histidine, resulting in the easy nuclear access of doxorubicin. |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2006.05.016 |