Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin

Direct conjugation of histidine to poly(2-hydroxyethyl aspartamide) (PHEA–His) and C 18-grafted PHEA (PHEA-g-C 18–His) was achieved via an ester linkage using N α-Boc- l-histidine, followed by the deprotection of Boc groups. PHEA–His series would be expected as an endosomolytic synthetic polymer bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2006-08, Vol.114 (1), p.60-68
Hauptverfasser: Yang, Seung Rim, Lee, Hyun Jin, Kim, Jong-Duk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct conjugation of histidine to poly(2-hydroxyethyl aspartamide) (PHEA–His) and C 18-grafted PHEA (PHEA-g-C 18–His) was achieved via an ester linkage using N α-Boc- l-histidine, followed by the deprotection of Boc groups. PHEA–His series would be expected as an endosomolytic synthetic polymer because of the buffering capacity at physiological and endosomal pH regulated by α-amine and imidazole groups in side chains. PHEA-g-C 18–His series formed stable self-aggregates due to the hydrophobic interaction between grafted alkyl chains. The size, zeta potential, and micropolarity of PHEA-g-C 18–His series greatly increased at pH 5.0, because aggregates swelled by a positive surface charge and the electrostatic repulsion of ionized histidine moieties in the aggregate surface. In the confocal microscopy, it was revealed that PHEA-g-C 18–His was more uniformly distributed than PHEA-g-C 18 in HeLa cells after 8 h of incubation and was attributed to the endosomolytic ability of conjugated histidine moieties. In doxorubicin-loaded self-aggregate systems, the histidine conjugation improved the cell cytotoxicity by a fast release of loaded doxorubicin at low pH and the endosomolytic ability of conjugated histidine, resulting in the easy nuclear access of doxorubicin.
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2006.05.016