Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels
To characterize the radiation-enhancing effects on human cancer cells and underlying mechanisms of celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, and to ascertain whether its effects are COX-2 dependent. Clonogenic cytotoxicity assays and radiation survival assays after treatment with cele...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2005-10, Vol.65 (20), p.9501-9509 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To characterize the radiation-enhancing effects on human cancer cells and underlying mechanisms of celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, and to ascertain whether its effects are COX-2 dependent. Clonogenic cytotoxicity assays and radiation survival assays after treatment with celecoxib +/- radiation were done on four human cancer cell lines that expressed differential COX-2 levels. Stably COX-2 knocked down or overexpressed cell lines were developed, and clonogenic assays, apoptosis assays, or cell cycle change measurements were conducted after treatment with celecoxib +/- radiation. Prostaglandin E(2) (PGE2) was applied to medium after treatment with celecoxib +/- radiation to determine whether the radiation-enhancing effect associated with celecoxib results from reduced generation of prostaglandin. Celecoxib's radiation-enhancing effect was observed in COX-2-expressing A549 and NCI-H460 cells but was not observed in the COX-2 nonexpressing MCF-7 and HCT-116 cells. Celecoxib's radiation-enhancing effects in A549 cells were shown to disappear after the administration of COX-2 knocked down. In contrast, the HCT-116 cells were radiosensitized by celecoxib after being transfected with COX-2 expression vector. The addition of PGE2 after treatment with celecoxib +/- radiation had no significant effects on celecoxib's radiation-enhancing effects in A549 and COX-2 transfected HCT-116 cells. Radiation-induced G2-M arrest was enhanced and sustained in the COX-2-overexpressing cells compared with that seen in COX-2 low-expressing cells. Celecoxib or NS-398 effected no changes or attenuated radiation-induced G(2)-M arrest in the COX-2-overexpressing cells but further enhanced the radiation-induced G(2)-M arrest in the COX-2 low-expressing cells. Celecoxib's radiation-enhancing effects seem to occur in a COX-2 expression-dependent manner in the cancer cells. This effect does not seem to be the result of reduced PGE2 generation. Celecoxib may exert an inhibitory effect on enhanced radiation-induced G2-M arrest in the COX-2-overexpressing cells, which may allow the arrested cells to enter mitosis and die after radiation, but may also further enhance radiation-induced G2-M arrest in the COX-2 low-expressing cells, by virtue of another mechanism. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.can-05-0220 |