Dimerization of glycoprotein E(rns) of classical swine fever virus is not essential for viral replication and infection

The pestivirus glycoprotein E(rns), a ribonuclease, is expressed on the surface of virions and in infected cells as a disulfide-linked homodimer. E(rns) is involved in the infection process and its RNase activity is probably involved in viral replication and pathogenesis. The most C-terminal cystein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2005-11, Vol.150 (11), p.2271-2286
Hauptverfasser: van Gennip, H G P, Hesselink, A T, Moormann, R J M, Hulst, M M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pestivirus glycoprotein E(rns), a ribonuclease, is expressed on the surface of virions and in infected cells as a disulfide-linked homodimer. E(rns) is involved in the infection process and its RNase activity is probably involved in viral replication and pathogenesis. The most C-terminal cysteine residue forms an intermolecular disulfide bond with another E(rns) monomer, resulting in an E(rns) dimer. To study the function of dimerisation of E(rns) for viral replication, the cysteine residue at amino acid position 438 was mutated into a serine residue. The mutated C438S gene was cloned into a vector containing an infectious cDNA copy of the CSFV C-strain genome. Using reverse genetics, a mutant virus was generated that only expressed monomeric E(rns), confirming that Cys 438 is essential for homo-dimerization. Characterization of this mutant virus and of a baculovirus-expressed C438S mutant protein indicated that the loss of the dimeric state of E(rns) reduced the affinity of binding of virions and E(rns) to heparan sulphate (HS), the receptor for E(rns) on the cell surface of SK6 cells. This suggests that interaction of virus-bound E(rns) homodimers with membrane associated HS may be a joined action of the two HS-binding domains (one in each monomer) present in the homodimer.
ISSN:0304-8608