Replication kinetics of Marek's disease vaccine virus in feathers and lymphoid tissues using PCR and virus isolation

CVI988 (Rispens), an avirulent strain of Marek's disease virus, is the most widely used vaccine against Marek's disease. The kinetics of replication of CVI988 was examined in tissues of chickens vaccinated at either 1 day or 14 days of age and sampled regularly up to 28 days post-vaccinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general virology 2005-11, Vol.86 (11), p.2989-2998
Hauptverfasser: Baigent, S.J, Smith, L.P, Currie, R.J.W, Nair, V.K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CVI988 (Rispens), an avirulent strain of Marek's disease virus, is the most widely used vaccine against Marek's disease. The kinetics of replication of CVI988 was examined in tissues of chickens vaccinated at either 1 day or 14 days of age and sampled regularly up to 28 days post-vaccination. Age at vaccination had no significant effect on the kinetics of CVI988 virus replication. During the cytolytic phase of infection (1-7 days), virus levels peaked in the spleen, bursa and thymus with very close correlation among these organs. Virus load in peripheral blood lagged behind and did not reach high levels. Significant numbers of virus genomes were detected in the feather tips only after 7 days, but subsequently rose to levels almost 10(3)-fold greater than in the other tissues. This is the first accurate quantitative data for kinetics of CVI988 replication in a variety of tissues. There was good correlation between data from virus isolation and PCR, with real-time PCR being the preferred method for rapid, accurate and sensitive quantification of virus. Feathers were ideal for non-invasive sampling to detect and measure CVI988 in live chickens and, from 10 days onwards, virus load in feather tips was predictive of virus load in lymphoid tissues where immune responses will occur. The potential for real-time PCR analysis of feather samples for further investigation of the mechanism of vaccinal protection, and to assist optimization of vaccination regimes, is discussed.
ISSN:0022-1317
1465-2099
DOI:10.1099/vir.0.81299-0