Reversible Extrusion and Uptake of HCl Molecules by Crystalline Solids Involving Coordination Bond Cleavage and Formation
Yellow crystalline salts (3-XpyH)2[CuCl4] (3-XpyH = 3-halopyridinium, X = Cl, Br) lose HCl upon exposure to air in an open vessel, yielding quantitatively blue crystalline coordination compounds [CuCl2(3-Xpy)2]. The reaction is prevented if the vessel is sealed, but can be driven forward under such...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2006-08, Vol.128 (30), p.9584-9585 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Yellow crystalline salts (3-XpyH)2[CuCl4] (3-XpyH = 3-halopyridinium, X = Cl, Br) lose HCl upon exposure to air in an open vessel, yielding quantitatively blue crystalline coordination compounds [CuCl2(3-Xpy)2]. The reaction is prevented if the vessel is sealed, but can be driven forward under such conditions by providing a trapping agent for HCl, such as an aqueous solution of AgNO3. The reaction requires cleavage of Cu−Cl and N−H bonds and formation of Cu−N bonds. The metal coordination geometry also changes from distorted tetrahedral to square planar. Remarkably, the reaction is fully reversible upon exposure of the blue coordination compound to vapor from a concentrated aqueous solution of HCl, and the initial yellow crystalline salt results. The structural changes occurring in these reactions have been followed by X-ray powder diffraction, including Rietveld refinement, of the crystal structures. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0625733 |