Ginsenoside Rg1 inhibits proliferation of vascular smooth muscle cells stimulated by tumor necrosis factor-α
Aim: To investigate the proliferation of vascular smooth muscle cells (VSMC) affected by ginsenoside Rg1 and further explore the molecular mechanism of ginsenoside Rg1 using proteomics. Methods: The proliferation of VSMC was measured by MTS assay kit and flow cytometry. Proteomic alterations were an...
Gespeichert in:
Veröffentlicht in: | Acta pharmacologica Sinica 2006-08, Vol.27 (8), p.1000-1006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim: To investigate the proliferation of vascular smooth muscle cells (VSMC) affected by ginsenoside Rg1 and further explore the molecular mechanism of ginsenoside Rg1 using proteomics. Methods: The proliferation of VSMC was measured by MTS assay kit and flow cytometry. Proteomic alterations were analyzed using two-dimensional electrophoresis and peptide mass fingerprinting. Differential proteins found in proteomics were confirmed by RT-PCR. Results: The proliferation of VSMC was enhanced significantly after tumor necrosis factor-α (TNF-α) treatment, and ginsenoside Rg 1 treatment inhibited proliferation in a dose-dependent manner. Proteomic analysis showed 24 protein spots were changed, including 17 spots that were increased and 7 spots that were decreased. Ginsenoside Rg1 could restore the expression levels of these proteins, at least partly, to basic levels of untreated cells. The expression of G-protein coupled receptor kinase, protein kinase C (PKC)-ζ, N-ras protein were decreased, while cycle related protein p21 was increased by ginsenoside Rgl in TNF-α treated VSMC. Condusion: PKC-ζ and p21 pathway might be the mechanism for inhibitory effects of ginsenoside Rgl on proliferation of VSMC. |
---|---|
ISSN: | 1671-4083 1745-7254 |
DOI: | 10.1111/j.1745-7254.2006.00331.x |