Fibrillation of Human Insulin A and B Chains
Human insulin, which consists of disulfide cross-linked A and B polypeptide chains, readily forms amyloid fibrils under slightly destabilizing conditions. We examined whether the isolated A and B chain peptides of human insulin would form fibrils at neutral and acidic pH. Although insulin exhibits a...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2006-08, Vol.45 (30), p.9342-9353 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human insulin, which consists of disulfide cross-linked A and B polypeptide chains, readily forms amyloid fibrils under slightly destabilizing conditions. We examined whether the isolated A and B chain peptides of human insulin would form fibrils at neutral and acidic pH. Although insulin exhibits a pH-dependent lag phase in fibrillation, the A chain formed fibrils without a lag at both pHs. In contrast, the B chain exhibited complex concentration-dependent fibrillation behavior at acidic pH. At higher concentrations, e.g., >0.2 mg/mL, the B chains preferentially and rapidly formed stable protofilaments rather than mature fibrils upon incubation at 37 °C. Surprisingly, these protofilaments did not convert into mature fibrils. At lower B chain concentrations, however, mature fibrils were formed. The explanation for the concentration dependence of B chain fibrillation is as follows. The B chains exist as soluble oligomers at acidic pH, have a β-sheet rich conformation as determined by CD, and bind ANS strongly, and these oligomers rapidly form dead-end protofilaments. However, under conditions in which the B chain monomer is present, such as low B chain concentration ( |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi0604936 |