Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes

Full-length HIV-1 genome sequencing provides important data needed to address several vaccine design, molecular epidemiologic and pathogenesis questions. A protocol is presented for obtaining near full-length genomes (NFLGs) from subjects infected with HIV-1 subtype C. This protocol was used to ampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of virological methods 2006-09, Vol.136 (1), p.118-125
Hauptverfasser: Rousseau, Christine M., Birditt, Brian A., McKay, Angela R., Stoddard, Julia N., Lee, Tsan Chun, McLaughlin, Sherry, Moore, Sarah W., Shindo, Nice, Learn, Gerald H., Korber, Bette T., Brander, Christian, Goulder, Philip J.R., Kiepiela, Photini, Walker, Bruce D., Mullins, James I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Full-length HIV-1 genome sequencing provides important data needed to address several vaccine design, molecular epidemiologic and pathogenesis questions. A protocol is presented for obtaining near full-length genomes (NFLGs) from subjects infected with HIV-1 subtype C. This protocol was used to amplify NFLGs from 244 of 366 (67%) samples collected at two clinics in Durban, South Africa (SK and PS). Viral load was directly associated with frequency of successful NFLG amplification for both cohorts (PS; p = 0.005 and SK; p < 0.001). Seventeen of 38 initially NFLG-negative SK samples had variation within the PCR primer binding sites, however only 3 of these were successfully re-amplified using re-designed primers homologous to the target viruses. NFLGs were obtained from 7 of 24 PBMC samples processed from subjects whose plasma did not yield a NFLG. Stable plasmid clones were obtained from all 244 NFLG-positive PCR products, and both strands of each genome were sequenced, using a primary set of 46 primers. These methods thus allow the large-scale collection of HIV-1 NFLGs from populations infected primarily with subtype C. The methods are readily adaptable to other HIV-1 subtypes, and provide materials for viral functional analyses and population-based molecular epidemiology studies that include analysis of viral genome chimerization.
ISSN:0166-0934
1879-0984
DOI:10.1016/j.jviromet.2006.04.009