The cytotoxicity of eutigosides from Eurya emarginata against HL-60 promyelocytic leukemia cells

Two phenolic glucosides, eutigoside B and eutigoside C were isolated from the fresh leaves of Eurya emarginata. These two phenolic glucosides exerted a significant inhibitory effect on the growth of HL-60 promyelocytic leukemia cells. Furthermore, when the HL-60 cells were treated with eutigoside C,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of pharmacal research 2005-09, Vol.28 (9), p.1047-1052
Hauptverfasser: Park, Soo Yeong, Yang, Hong Chul, Moon, Ji Young, Lee, Nam Ho, Kim, Se Jae, Kang, Ji Hoon, Lee, Young Ki, Park, Deok Bae, Yoo, Eun Sook, Kang, Hee Kyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two phenolic glucosides, eutigoside B and eutigoside C were isolated from the fresh leaves of Eurya emarginata. These two phenolic glucosides exerted a significant inhibitory effect on the growth of HL-60 promyelocytic leukemia cells. Furthermore, when the HL-60 cells were treated with eutigoside C, several apoptotic characteristics such as DNA fragmentation, morphologic changes, and increase of the population of sub-G1 hypodiploid cells were observed. In order to understand the mechanism of apoptosis induction by eutigoside C, we examined the changes of Bcl-2 and Bax expression levels. The eutigoside C reduced Bcl-2 protein and mRNA levels, but slightly increased Bax protein and mRNA levels in a time-dependent manner. When we examined the activation of caspase-3, an effector of apoptosis, the eutigoside C increased the expression of active form (19-kDa) of caspase-3 and the increase of their activities was demonstrated by the cleavage of poly (ADP-ribose) polymerase, a substrate of caspase-3, to 85-kDa. The results suggest that the inhibitory effect of eutigoside C from E. emarginata on the growth of HL-60 appears to arise from the induction of apoptosis via the down-regulation of Bcl-2 and the activation of caspase.
ISSN:0253-6269
DOI:10.1007/BF02977400