A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia
Periodic chronic myelogenous leukemia (PCML) is an interesting dynamical disease of the hematopoietic system in which oscillating levels of circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of these three differentiated cell types have the same oscillation period, bu...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2005-11, Vol.237 (2), p.117-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Periodic chronic myelogenous leukemia (PCML) is an interesting dynamical disease of the hematopoietic system in which oscillating levels of circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of these three differentiated cell types have the same oscillation period, but the relation of the oscillation mean and amplitude to the normal levels is variable. Given the appearance of the abnormal Philadelphia chromosome in all of the nucleated progeny of the hematopoietic stem cells (HSCs), the most parsimonious conclusion is that chronic myelogenous leukemia, and its periodic variant, arise from derangements partially involving the dynamics of the stem cells. Here, we have synthesized several previous mathematical models of HSC dynamics, and models for the regulation of neutrophils, platelets and erythrocytes into a comprehensive model for the regulation of the hematopoietic system. Based on estimates of parameters for a typical normal human, we have systematically explored the changes in some of these parameters necessary to account for the quantitative data on leukocyte, platelet and reticulocyte cycling in 11 patients with PCML. Our results indicate that the critical model parameter changes required to simulate the PCML patient data are an increase in the amplification in the leukocyte line, an increase in the differentiation rate from the stem cell compartment into the leukocyte line, and the rate of apoptosis in the stem cell compartment. Our model system is particularly sensitive to changes in stem cell apoptosis rates, suggesting that changes in the numbers of proliferating stem cells may be important in generating PCML. |
---|---|
ISSN: | 0022-5193 1095-8541 |
DOI: | 10.1016/j.jtbi.2005.03.033 |