Regulation of Protein Compartmentalization Expands the Diversity of Protein Function

Proteins destined for the secretory pathway are translocated into the endoplasmic reticulum (ER) by signal sequences that vary widely in their functional properties. We have investigated whether differences in signal sequence function have been exploited for cellular benefit. A cytosolic form of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2005-10, Vol.9 (4), p.545-554
Hauptverfasser: Shaffer, Kelly L., Sharma, Ajay, Snapp, Erik L., Hegde, Ramanujan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteins destined for the secretory pathway are translocated into the endoplasmic reticulum (ER) by signal sequences that vary widely in their functional properties. We have investigated whether differences in signal sequence function have been exploited for cellular benefit. A cytosolic form of the ER chaperone calreticulin was found to arise by an aborted translocation mechanism dependent on its signal sequence and factors in the ER lumen and membrane. A signal sequence that functions independently of these accessory translocation factors selectively eliminated cytosolic calreticulin. In vivo replacement of endogenous calreticulin with a constitutively translocated form influenced glucocorticoid receptor-mediated gene activation without compromising chaperone activity in the ER. Thus, in addition to its well-established ER lumenal functions, calreticulin has an independent role in the cytosol that depends critically on its inefficient compartmentalization. We propose that regulation of protein translocation represents a potentially general mechanism for generating diversity of protein function.
ISSN:1534-5807
1878-1551
DOI:10.1016/j.devcel.2005.09.001