Dendritic Cationic Lipids with Highly Charged Headgroups for Efficient Gene Delivery
Gene therapy is expected to lead to powerful new approaches for curing many diseases, a potential that is currently explored in worldwide clinical trials. Nonviral DNA delivery systems are desirable to overcome the inherent problems of viral vectors, but their current efficiency requires improvement...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2006-07, Vol.17 (4), p.877-888 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gene therapy is expected to lead to powerful new approaches for curing many diseases, a potential that is currently explored in worldwide clinical trials. Nonviral DNA delivery systems are desirable to overcome the inherent problems of viral vectors, but their current efficiency requires improvement and the understanding of their mechanism of action is incomplete. We have synthesized new multivalent cationic lipids with highly charged dendritic headgroups to probe the structure−transfection efficiency relationships of cationic liposome (CL)−DNA complexes, a prevalent nonviral vector. The lipid headgroups are constructed from ornithine cores and ornithine or carboxyspermine endgroups. The dendritic lipids were prepared on a gram scale, using a synthetic scheme that permits facile variation of the lipid building blocks headgroup, spacer, and hydrophobic moiety. They carry four to sixteen positive charges in their headgroups. Complexes of DNA with mixtures of the dendritic lipids and neutral 1,2-dioleoyl-sn-glycero phosphatidylcholine (DOPC) exhibit novel structures at high contents of the highly charged lipids, while the well-known lamellar phase is formed at high contents of DOPC. DNA complexes of the new dendritic lipids efficiently transfect mammalian cells in culture without cytotoxicity and, in contrast to lamellar complexes, maintain high transfection efficiency over a broad range of composition. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc050310c |