G-protein-dependent and -independent pathways in denatonium signal transduction
To clarify the involvement of G protein in denatonium signal transduction, we carried out a whole-cell patch-clamp analysis with isolated taste cells in mice. Two different responses were observed by applying GDP-beta-S, a G-protein inhibitor. One response to denatonium was reduced by GDP-beta-S (G-...
Gespeichert in:
Veröffentlicht in: | Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2005, Vol.69 (9), p.1643-1651 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To clarify the involvement of G protein in denatonium signal transduction, we carried out a whole-cell patch-clamp analysis with isolated taste cells in mice. Two different responses were observed by applying GDP-beta-S, a G-protein inhibitor. One response to denatonium was reduced by GDP-beta-S (G-protein-dependent), whereas the other was not affected (G-protein-independent). These different patterns were also observed by concurrently inhibiting the phospholipase C beta 2 and phosphodiesterase pathways via G protein. These data suggest dual, G-protein-dependent and -independent mechanisms for denatonium. Moreover, the denatonium responses were not attenuated by singly inhibiting the phospholipase C beta 2 or phosphodiesterase pathway, implying that both pathways were involved in G-protein-dependent transduction. In the G-protein-independent cells, the response was abolished by the depletion of calcium ions within the intracellular store. These results suggest that Ca(2+) release from the intracellular store is an important factor. Our data demonstrate multiple transduction pathways for denatonium in mammalian taste cells. |
---|---|
ISSN: | 0916-8451 1347-6947 |
DOI: | 10.1271/bbb.69.1643 |