Injectable Nanocomposites of Single-Walled Carbon Nanotubes and Biodegradable Polymers for Bone Tissue Engineering
We have investigated the dispersion of single-walled carbon nanotubes (SWNTs) and functionalized SWNTs (F-SWNTs) in the unsaturated, biodegradable polymer poly(propylene fumarate) (PPF) and examined the rheological properties of un-cross-linked nanocomposite formulations as well as the electrical an...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2006-07, Vol.7 (7), p.2237-2242 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the dispersion of single-walled carbon nanotubes (SWNTs) and functionalized SWNTs (F-SWNTs) in the unsaturated, biodegradable polymer poly(propylene fumarate) (PPF) and examined the rheological properties of un-cross-linked nanocomposite formulations as well as the electrical and mechanical properties of cross-linked nanocomposites. F-SWNTs were produced from individual SWNTs by a diazonium-based method and dispersed better than unmodified SWNTs in both un-cross-linked and cross-linked PPF matrix. Cross-linked nanocomposites with F-SWNTs were superior to those with unmodified SWNTs in terms of their mechanical properties. Specifically, nanocomposites with 0.1 wt % F-SWNTs loading resulted in a 3-fold increase in both compressive modulus and flexural modulus and a 2-fold increase in both compressive offset yield strength and flexural strength when compared to pure PPF networks, whereas the use of 0.1 wt % SWNTs gained less than 37% mechanical reinforcement. These extraordinary mechanical enhancements considered together with Raman scattering and sol fraction measurements indicate strong SWNT−PPF interactions and increased cross-linking densities resulting in effective load transfer. With enhanced mechanical properties and capabilities of in situ injection and cross-linking, these SWNT/polymer nanocomposites hold significant implications for the fabrication of bone tissue engineering scaffolds. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm060391v |