Photofragment translation spectroscopy of ClN3 at 248 nm: determination of the primary and secondary dissociation pathways

Photofragmentation translational spectroscopy was used to identify the primary and secondary reaction pathways in the KrF laser (248 nm) photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular channel producing NCl (X (3)Sigma,a (1)Delta) + N(2) and the radic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-09, Vol.123 (10), p.104305-104305
Hauptverfasser: Hansen, N, Wodtke, A M, Goncher, S J, Robinson, J C, Sveum, N E, Neumark, D M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photofragmentation translational spectroscopy was used to identify the primary and secondary reaction pathways in the KrF laser (248 nm) photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular channel producing NCl (X (3)Sigma,a (1)Delta) + N(2) and the radical channel producing Cl ((2)P(J)) + N(3) were analyzed in detail. Consistent with previously reported velocity map ion imaging experiments [N. Hansen and A. M. Wodtke, J. Phys. Chem. A 107, 10608 (2003)] a bimodal translational energy distribution is seen when Cl atoms are monitored at mz = 35(Cl(+)). Momentum-matched N(3) counterfragments can be seen at mz = 42(N(3) (+)). The characteristics of the observed radical-channel data reflect the formation of linear azide radical and another high-energy form of N(3) (HEF-N(3)) that exhibits many of the characteristics one would expect from cyclic N(3). HEF-N(3) can be directly detected by electron-impact ionization more than 100 mus after its formation. Products of the unimolecular dissociation of HEF-N(3) are observed in the mz = 14(N(+)) and mz = 28(N(2) (+)) data. Anisotropy parameters were determined for the primary channels to be beta = -0.3 for the NCl forming channel and beta = 1.7 and beta = 0.4 for the linear N(3) and HEF-N(3) forming channels, respectively. There is additional evidence for secondary photodissociation of N(3) and of NCl.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1948381