Evolution of a unique mitotype-specific protein-coding extension of the cytochrome c oxidase II gene in freshwater mussels (Bivalvia: Unionoida)

A unique mode of mitochondrial DNA inheritance, designated doubly-uniparental inheritance (DUI), occurs in three bivalve subclasses (Pteriomorpha: Mytiloida, Palaeoheterodonta: Unionoida, Heterodonta: Veneroida), indicating that DUI may be a widespread phenomenon among bivalves. In mytiloids, breakd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular evolution 2005-09, Vol.61 (3), p.381-389
Hauptverfasser: Curole, Jason P, Kocher, Thomas D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unique mode of mitochondrial DNA inheritance, designated doubly-uniparental inheritance (DUI), occurs in three bivalve subclasses (Pteriomorpha: Mytiloida, Palaeoheterodonta: Unionoida, Heterodonta: Veneroida), indicating that DUI may be a widespread phenomenon among bivalves. In mytiloids, breakdown of this pattern of inheritance (gender-switching) is observed in natural populations and in a phylogenetic context. In contrast, gender-switching has not occurred during the evolutionary history of unionoids. Here we present sequences for the male (M) and female (F) mitotypes from an additional 8 species of Unionoida. Consistent with previous observations, the M and F mitotypes of all species form reciprocally monophyletic clades supporting the hypothesis of taxon-specific rates of gender-switching. Coinciding with the absence of gender-switching is an approximately 185 codon extension of the cytochrome c oxidase II (MTCO2) locus in the male genome. The extension is present in all 12 unionoid species examined, including a representative of the family Margaritiferidae, indicating that this protein-coding polymorphism originated > or = 200 MYBP: . Although the extension is well conserved in length among 11 of the 12 species, one taxon has a significantly shortened extension. Lastly, examination of the rates and patterns of substitution indicate that the extension is evolving under relaxed purging selection, a pattern inconsistent with the conserved nature of MTCO2 or any cytochrome c oxidase locus.
ISSN:0022-2844
1432-1432
DOI:10.1007/s00239-004-0192-7