The absence of a Ca(2+) signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality

A series of Ca(2+) oscillations during mammalian fertilization is necessary and sufficient to stimulate meiotic resumption and pronuclear formation. It is not known how effectively development continues in the absence of the initial Ca(2+) signal. We have triggered parthenogenetic egg activation wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproduction (Cambridge, England) England), 2006-07, Vol.132 (1), p.45-57
Hauptverfasser: Rogers, N T, Halet, G, Piao, Y, Carroll, J, Ko, M S H, Swann, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of Ca(2+) oscillations during mammalian fertilization is necessary and sufficient to stimulate meiotic resumption and pronuclear formation. It is not known how effectively development continues in the absence of the initial Ca(2+) signal. We have triggered parthenogenetic egg activation with cycloheximide that causes no Ca(2+) increase, with ethanol that causes a single large Ca(2+) increase, or with Sr(2+) that causes Ca(2+) oscillations. Eggs were co-treated with cytochalasin D to make them diploid and they formed pronuclei and two-cell embryos at high rates with each activation treatment. However, far fewer of the embryos that were activated by cycloheximide reached the blastocyst stagecompared tothose activated by Sr(2+) orethanol. Any cycloheximide-activated embryos that reached the blastocyst stage had a smaller inner cell mass number and a greater rate of apoptosis than Sr(2+)-activated embryos. The poor development of cycloheximide-activated embryos was due to the lack of Ca(2+) increase because they developed to blastocyst stages at high rates when co-treated with Sr(2+) or ethanol. Embryos activated by either Sr(2+) or cycloheximide showed similar signs of initial embryonic genome activation (EGA) when measured using a reporter gene. However, microarray analysis of gene expression at the eight-cell stage showed that activation by Sr(2+) leads to a distinct pattern of gene expression from that seen with embryos activated by cycloheximide. These data suggest that activation of mouse eggs in the absence of a Ca(2+) signal does not affect initial parthenogenetic events, but can influence later gene expression and development.
ISSN:1470-1626
DOI:10.1530/rep.1.01059