Physics models of centriole replication

Our previous pre-clinic experimental results have showed that the epithelialization can be enhanced by the externally applied rectangular pulsed electrical current stimulation (RPECS). The results are clinically significant for patients, especially for those difficult patients whose skin wounds need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical hypotheses 2006, Vol.67 (3), p.572-577
Hauptverfasser: Cheng, Kang, Zou, Changhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous pre-clinic experimental results have showed that the epithelialization can be enhanced by the externally applied rectangular pulsed electrical current stimulation (RPECS). The results are clinically significant for patients, especially for those difficult patients whose skin wounds need long periods to heal. However, the results also raise questions: How does the RPECS accelerate the epithelium cell proliferation? To answer these questions, we have previously developed several models for animal cells, in a view of physics, to explain mechanisms of mitosis and cytokinesis at a cellular level, and separation of nucleotide sequences and the unwinding of a double helix during DNA replication at a bio-molecular level. In this paper, we further model the mechanism of centriole replication during a natural and normal mitosis and cytokinesis to explore the mechanism of epithelialization enhanced with the externally applied RPECS at a bio-molecular level. Our models suggest: (1) Centriole replication is an information flowing. The direction of the information flowing is from centrioles to centrioles based on a cylindrical template of 9 × 3 protein microtubules (MTs) pattern. (2) A spontaneous and strong electromagnetic field (EMF) force is a pushing force that separates a mother and a daughter centrioles in centrosomes or in cells, while a pulling force of interacting fibers and pericentriolar materials delivers new babies. The newly born babies inherit the pattern information from their mother(s) and grow using microtubule fragments that come through the centrosome pores. A daughter centriole is always born and grows along stronger EMF. The EMF mostly determines centrioles positions and plays key role in centriole replication. We also hypothesize that the normal centriole replication could not been disturbed in centrosome in the epithelium cells by our RPECS, because the centrioles have two non-conducting envelope (cell and centrosome membranes), that protect the normal duplication. The induced electric field by externally applied RPECS could be mild compared with the spontaneous and natural electric field of the centrioles. Therefore, the centriole replication during the epithelium cellular proliferation may be directly, as well as indirectly (e.g., somatic reflex) accelerated by the RPECS.
ISSN:0306-9877
1532-2777
DOI:10.1016/j.mehy.2006.02.041