Use of a Self-Assembling Organogel as a Reverse Template in the Preparation of Imprinted Porous Polymer Films

The concept of reverse templating of an organogel to form imprinted porous divinylbenzene polymer films with submicrometer channels is demonstrated. The organogel comprising a 1:1 molar ratio of two organogelators, that is, bis(2-ethylhexyl) sodium sulfosuccinate and 4-chlorophenol, was formed in di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2005-09, Vol.21 (20), p.9322-9326
Hauptverfasser: Tan, Grace, Singh, Mohit, He, Jibao, John, Vijay T, McPherson, Gary L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of reverse templating of an organogel to form imprinted porous divinylbenzene polymer films with submicrometer channels is demonstrated. The organogel comprising a 1:1 molar ratio of two organogelators, that is, bis(2-ethylhexyl) sodium sulfosuccinate and 4-chlorophenol, was formed in divinylbenzene. The gel was cast as a thin film before UV polymerization of the solvent, and the organogelators were later removed by simple washing with water and isooctane. The integrity of the fiber bundles of the organogel was preserved during polymerization, and an exact hollow replica was obtained after the organogelators were leached away. It is easily possible to imprint gel fiber bundle structures into polymeric films through this technique. The gel can also be formed on macroporous substrates to yield supported thin porous polymeric films. With the incorporation of functional nanoparticles in AOT inverse micelles and hence the organogel, nanoparticle-containing porous polymer films exhibiting luminescence or magnetic properties are envisioned.
ISSN:0743-7463
1520-5827
DOI:10.1021/la051080t