Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage

Midazolam, a benzodiazepine, has a hypnotic effect and is widely used as a sedative. The role of midazolam in activation of macrophages during sepsis is not known. The aim of this study was to evaluate the antiinflammatory actions of midazolam in cultured macrophages. Using a macrophage cell line, R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesiology (Philadelphia) 2006-07, Vol.105 (1), p.105-110
Hauptverfasser: Kim, Seon Nyo, Son, Soo Chang, Lee, Sang Mook, Kim, Cuk Seong, Yoo, Dae Goon, Lee, Sang Ki, Hur, Gang Min, Park, Jin Bong, Jeon, Byeong Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Midazolam, a benzodiazepine, has a hypnotic effect and is widely used as a sedative. The role of midazolam in activation of macrophages during sepsis is not known. The aim of this study was to evaluate the antiinflammatory actions of midazolam in cultured macrophages. Using a macrophage cell line, RAW264.7 cells, the effect of midazolam on proinflammatory mediators and activation of mitogen-activated protein kinase was measured by Western blot. Nuclear factor-kappaB (NF-kappaB) activation and translocation of p65 subunit of NF-kappaB was measured using luciferase assay and immunocytochemistry. Superoxide production was measured by lucigenin chemiluminescence. Midazolam significantly inhibited lipopolysaccharide-induced up-regulation of both cyclooxygenase 2 and inducible nitric oxide synthase in a dose-dependent manner (approximately 3-30 microm). IkappaB-alpha degradation and NF-kappaB transcriptional activity induced by lipopolysaccharide were also suppressed by the midazolam. Nuclear translocation of the p65 subunit of NF-kappaB was inhibited by midazolam. Furthermore, midazolam suppressed phosphorylation of p38 mitogen-activated protein kinase and also inhibited lipopolysaccharide-induced superoxide production in macrophages. These results suggest that midazolam has an antiinflammatory action by inhibiting inducible nitric oxide synthase and cyclooxygenase-2 expression, possibly through suppression of NF-kappaB and p38 mitogen-activated protein kinase activation.
ISSN:0003-3022
1528-1175
DOI:10.1097/00000542-200607000-00019