Effect of transfer of one or two in vitro-produced embryos and post-transfer administration of gonadotropin releasing hormone on pregnancy rates of heat-stressed dairy cattle

Pregnancy rates following transfer of an in vitro-produced (IVP) embryo are often lower than those obtained following transfer of an embryo produced by superovulation. The purpose of the current pair of experiments was to examine two strategies for increasing pregnancy rates in heat stressed, dairy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theriogenology 2006-07, Vol.66 (2), p.224-233
Hauptverfasser: Franco, M., Block, J., Jousan, F.D., de Castro e Paula, L.A., Brad, A.M., Franco, J.M., Grisel, F., Monson, R.L., Rutledge, J.J., Hansen, P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pregnancy rates following transfer of an in vitro-produced (IVP) embryo are often lower than those obtained following transfer of an embryo produced by superovulation. The purpose of the current pair of experiments was to examine two strategies for increasing pregnancy rates in heat stressed, dairy recipients receiving an IVP embryo. One method was to transfer two embryos into the uterine horn ipsilateral to the CL, whereas the other method involved injection of GnRH at Day 11 after the anticipated day of ovulation. In Experiment 1, 32 virgin crossbred heifers and 26 lactating crossbred cows were prepared for timed embryo transfer by being subjected to a timed ovulation protocol. Those having a palpable CL were randomly selected to receive one ( n = 31 recipients) or two ( n = 27 recipients) embryos on Day 7 after anticipated ovulation. At Day 64 of gestation, the pregnancy rate tended to be higher ( P = 0.07) for cows than for heifers. Heifers that received one embryo tended to have a higher pregnancy rate than those that received two embryos (41% versus 20%, respectively) while there was no difference in pregnancy rate for cows that received one or two embryos (57% versus 50%, respectively). Pregnancy loss between Day 64 and 127 only occurred for cows that received two embryos (pregnancy rate at Day 127 = 17%). Between Day 127 and term, one animal (a cow with a single embryo) lost its pregnancy. There was no difference in pregnancy rates at Day 127 or calving rates between cows and heifers, but females that received two embryos had lower Day-127 pregnancy rates and calving rates than females that received one embryo ( P < 0.03). Of the females receiving two embryos that calved, 2 of 5 gave birth to twins. For Experiment 2, 87 multiparous, late lactation, nonpregnant Holstein cows were synchronized for timed embryo transfer as in Experiment 1. Cows received a single embryo in the uterine horn ipsilateral to the ovary containing the CL and received either 100 μg GnRH or vehicle at Day 11 after anticipated ovulation (i.e. 4 days after embryo transfer). There was no difference in pregnancy rate for cows that received the GnRH or vehicle treatment (18% versus 17%, respectively). In conclusion, neither unilateral transfer of two embryos nor administration of GnRH at Day 11 after anticipated ovulation improved pregnancy rates of dairy cattle exposed to heat stress.
ISSN:0093-691X
1879-3231
DOI:10.1016/j.theriogenology.2005.11.005