Probing lysine acetylation in proteins: strategies, limitations, and pitfalls of in vitro acetyltransferase assays

The acetylation of proteins at specific lysine residues by acetyltransferase enzymes has emerged as a posttranslational modification of high biological impact. Although lysine acetylation in histone proteins is an integral part of the histone code the acetylation of a multitude of non-histone protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular & cellular proteomics 2005-09, Vol.4 (9), p.1226-1239
Hauptverfasser: Dormeyer, Wilma, Ott, Melanie, Schnölzer, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The acetylation of proteins at specific lysine residues by acetyltransferase enzymes has emerged as a posttranslational modification of high biological impact. Although lysine acetylation in histone proteins is an integral part of the histone code the acetylation of a multitude of non-histone proteins was recently recognized as a regulatory signal in many cellular processes. New substrates of acetyltransferase enzymes are continuously identified, and the analysis of acetylation sites in proteins is increasingly performed by mass spectrometry. However, the characterization of lysine acetylation in proteins using mass spectrometric techniques has some limitations and pitfalls. The non-enzymatic cysteine acetylation especially can result in false-positive identification of acetylated proteins. Here we demonstrate the application of various mass spectrometric techniques such as matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry for the analysis of protein acetylation. We describe diverse combinations of biochemical methods useful to map the acetylation sites in proteins and discuss their advantages and limitations. As an example, we present a detailed analysis of the acetylation of the HIV-1 transactivator of transcription (Tat) protein, which is known to be acetylated in vivo by the acetyltransferases p300 and p300/CBP-associated factor (PCAF).
ISSN:1535-9476
1535-9484
DOI:10.1074/mcp.M500047-MCP200