Long-range transition state theory
The implementation of variational transition state theory (VTST) for long-range asymptotic potential forms is considered, with particular emphasis on the energy and total angular momentum resolved (microJ-VTST) implementation. A long-range transition state approximation yields a remarkably simple an...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2005-05, Vol.122 (19), p.194103-194103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The implementation of variational transition state theory (VTST) for long-range asymptotic potential forms is considered, with particular emphasis on the energy and total angular momentum resolved (microJ-VTST) implementation. A long-range transition state approximation yields a remarkably simple and universal description of the kinetics of reactions governed by long-range interactions. The resulting (microJ-VTST) implementation is shown to yield capture-rate coefficients that compare favorably with those from trajectory simulations (deviating by less than 10%) for a wide variety of neutral and ionic long-range potential forms. Simple analytic results are derived for many of these cases. A brief comparison with a variety of low-temperature experimental studies illustrates the power of this approach as an analysis tool. The present VTST approach allows for a simple analysis of the applicability conditions for some related theoretical approaches. It also provides an estimate of the temperature or energy at which the "long-range transition state" moves to such short separations that short-range effects, such as chemical bonding, steric repulsion, and electronic state selectivity, must be considered. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1899603 |