Long-range transition state theory

The implementation of variational transition state theory (VTST) for long-range asymptotic potential forms is considered, with particular emphasis on the energy and total angular momentum resolved (microJ-VTST) implementation. A long-range transition state approximation yields a remarkably simple an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-05, Vol.122 (19), p.194103-194103
Hauptverfasser: Georgievskii, Yuri, Klippenstein, Stephen J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The implementation of variational transition state theory (VTST) for long-range asymptotic potential forms is considered, with particular emphasis on the energy and total angular momentum resolved (microJ-VTST) implementation. A long-range transition state approximation yields a remarkably simple and universal description of the kinetics of reactions governed by long-range interactions. The resulting (microJ-VTST) implementation is shown to yield capture-rate coefficients that compare favorably with those from trajectory simulations (deviating by less than 10%) for a wide variety of neutral and ionic long-range potential forms. Simple analytic results are derived for many of these cases. A brief comparison with a variety of low-temperature experimental studies illustrates the power of this approach as an analysis tool. The present VTST approach allows for a simple analysis of the applicability conditions for some related theoretical approaches. It also provides an estimate of the temperature or energy at which the "long-range transition state" moves to such short separations that short-range effects, such as chemical bonding, steric repulsion, and electronic state selectivity, must be considered.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1899603