Resistance proteins: molecular switches of plant defence

Specificity of the plant innate immune system is often conferred by resistance (R) proteins. Most R proteins contain leucine-rich repeats (LRRs), a central nucleotide-binding site (NBS) and a variable amino-terminal domain. The LRRs are mainly involved in recognition, whereas the amino-terminal doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in plant biology 2006-08, Vol.9 (4), p.383-390
Hauptverfasser: Takken, Frank LW, Albrecht, Mario, Tameling, Wladimir IL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Specificity of the plant innate immune system is often conferred by resistance (R) proteins. Most R proteins contain leucine-rich repeats (LRRs), a central nucleotide-binding site (NBS) and a variable amino-terminal domain. The LRRs are mainly involved in recognition, whereas the amino-terminal domain determines signalling specificity. The NBS forms part of a nucleotide binding (NB)-ARC domain that presumably functions as a molecular switch. The conserved nature of NB-ARC proteins makes it possible to map mutations of R protein residues onto the crystal structures of related NB-ARC proteins, providing hypotheses for the functional roles of these residues. A functional model emerges in which the LRRs control the molecular state of the NB-ARC domain. Pathogen recognition triggers nucleotide-dependent conformational changes that might induce oligomerisation, thereby providing a scaffold for activation of downstream signalling components.
ISSN:1369-5266
1879-0356
DOI:10.1016/j.pbi.2006.05.009