Depolarization of diffusely reflecting man-made objects

The polarization properties of light scattered or diffusely reflected from seven different man-made samples are studied. For each diffusely reflecting sample an in-plane Mueller matrix bidirectional reflectance distribution function is measured at a fixed bistatic angle using a Mueller matrix imagin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2005-09, Vol.44 (26), p.5434-5445
Hauptverfasser: DeBoo, Brian J, Sasian, Jose M, Chipman, Russell A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polarization properties of light scattered or diffusely reflected from seven different man-made samples are studied. For each diffusely reflecting sample an in-plane Mueller matrix bidirectional reflectance distribution function is measured at a fixed bistatic angle using a Mueller matrix imaging polarimeter. The measured profile of depolarization index with changing scattering geometry for most samples is well approximated by an inverted Gaussian function. Depolarization is minimum for specular reflection and increases asymptotically in a Gaussian fashion as the angles of incidence and scatter increase. Parameters of the Gaussian profiles fitted to the depolarization data are used to compare samples. The dependence of depolarization on the incident polarization state is compared for each Stokes basis vector: horizontal, vertical, 45 degrees, 135 degrees, and right- and left-circular polarized light. Linear states exhibit similar depolarization profiles that typically differ in value by less than 0.06 (where 1.0 indicates complete depolarization). Circular polarization states are depolarized more than linear states for all samples tested, with the output degree of polarization reduced from that of linear states by as much as 0.15. The depolarization difference between linear and circular states varies significantly between samples.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.44.005434