MHC homologs in the nervous system — they haven’t lost their groove

Major histocompatibility complex (MHC) molecules have been implicated in a number of non-immune roles in the central nervous system, particularly in synaptic development and plasticity. The discovery of M10 (50% sequence identity to classical MHC molecules) proteins expressed in the vomeronasal orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in neurobiology 2006-06, Vol.16 (3), p.351-357
Hauptverfasser: Olson, Rich, Dulac, Catherine, Bjorkman, Pamela J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Major histocompatibility complex (MHC) molecules have been implicated in a number of non-immune roles in the central nervous system, particularly in synaptic development and plasticity. The discovery of M10 (50% sequence identity to classical MHC molecules) proteins expressed in the vomeronasal organ adds to the list of non-traditional roles of MHC homologs. M10 molecules associate with the V2R class of vomeronasal receptors, a family of G-protein coupled receptors thought to function as pheromone receptors. Recent studies showing that classical MHC-binding peptides activate V2R-expressing neurons offer tempting clues that M10s might participate directly in the recognition of pheromone ligands, but M10 proteins do not bind to these peptides with significant affinity. Instead of presenting MHC-binding peptides, M10s might function as molecular chaperones to V2R receptors or more generally as modulators of neuronal function, as demonstrated elsewhere in the brain for classical MHC molecules.
ISSN:0959-4388
1873-6882
DOI:10.1016/j.conb.2006.05.007