Defective PTH regulation of sodium-dependent phosphate transport in NHERF-1-/- renal proximal tubule cells and wild-type cells adapted to low-phosphate media

The present experiments using primary cultures from renal proximal tubule cells examine two aspects of the regulation of sodium-dependent phosphate transport and membrane sodium-dependent phosphate transporter (Npt2a) expression by parathyroid hormone (PTH). Sodium-dependent phosphate transport in p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2005-10, Vol.289 (4), p.F933-F938
Hauptverfasser: Cunningham, Rochelle, E, Xiaofei, Steplock, Deborah, Shenolikar, Shirish, Weinman, Edward J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present experiments using primary cultures from renal proximal tubule cells examine two aspects of the regulation of sodium-dependent phosphate transport and membrane sodium-dependent phosphate transporter (Npt2a) expression by parathyroid hormone (PTH). Sodium-dependent phosphate transport in proximal tubule cells from wild-type mice grown in normal-phosphate media averaged 4.4 +/- 0.5 nmol.mg protein(-1).10 min(-1) and was inhibited by 30.5 +/- 8.6% by PTH (10(-7) M). This was associated with a 32.7 +/- 5.2% decrease in Npt2a expression in the plasma membrane. Proximal tubule cells from Na(+)/H(+) exchanger regulatory factor-1 (NHERF-1)(-/-) mice had a lower rate of phosphate transport compared with wild-type cells and a significantly reduced inhibitory response to PTH. Wild-type cells incubated in low-phosphate media for 24 h had a higher rate of phosphate transport compared with wild-type cells grown in normal-phosphate media but a significantly blunted inhibitory response to PTH. These data indicate a role for NHERF-1 in mediating the membrane retrieval of Npt2a and the subsequent inhibition of phosphate transport in renal proximal tubules. These studies also suggest that there is a blunted phosphaturic effect of PTH in cells adapted to low-phosphate media.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00005.2005