Formation of Phosphorus−Nitrogen Bonds by Reduction of a Titanium Phosphine Complex under Molecular Nitrogen

The reduction of high oxidation state metal complexes in the presence of molecular nitrogen is one of the most common methods to synthesize a dinitrogen complex. However, the presence of strong reducing agents combined with the poor binding ability of N2 can lead to unanticipated outcomes. For examp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-09, Vol.127 (37), p.12796-12797
Hauptverfasser: Morello, Lara, Yu, Peihua, Carmichael, Christopher D, Patrick, Brian O, Fryzuk, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reduction of high oxidation state metal complexes in the presence of molecular nitrogen is one of the most common methods to synthesize a dinitrogen complex. However, the presence of strong reducing agents combined with the poor binding ability of N2 can lead to unanticipated outcomes. For example, the reduction of [NPN]ZrCl2(THF) (where NPN = PhP(CH2SiMe2NPh)2) with KC8 under N2 leads to the formation of the side-on bridged dinuclear dinitrogen complex ([NPN]Zr(THF))2(μ-η2:η2-N2) with an N−N bond distance of 1.503(3) Å; however, reduction of the corresponding titanium precursor, [NPN]TiCl2, under N2 does not generate a dinitrogen complex, rather the bis(phosphinimide) derivative, ([N(PN)N]Ti)2, is isolated in which the added N2 is incorporated between the titanium and phosphine centers. Performing the reaction under 15N2 results in the 15N label being incorporated in the phosphinimide unit. A suggested mechanism for this process involves an initially formed dinitrogen complex being over reduced to generate a species with bridging nitrides that undergoes nucleophilic attack by the coordinated phosphine ligands and formation of the PN bond of the phosphinimide.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja054467r