Are Extensive T Cell Epitope Polymorphisms in the Plasmodium falciparum Circumsporozoite Antigen, a Leading Sporozoite Vaccine Candidate, Selected by Immune Pressure?

Protective cellular immune responses depend on MHC presentation of pathogen-derived Ag fragments. MHC diversity renders this process sensitive to point mutations coding for altered amino acid sequence of the short target Ag-derived peptides epitopes. Thus, in a given host, a pathogen with an altered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2005-09, Vol.175 (6), p.3935-3939
Hauptverfasser: Kumkhaek, Chutima, Phra-ek, Kooruethai, Renia, Laurent, Singhasivanon, Pratap, Looareesuwan, Sornchai, Hirunpetcharat, Chakrit, White, Nicholas J, Brockman, Alan, Gruner, Anne Charlotte, Lebrun, Nicolas, Alloueche, Ali, Nosten, Francois, Khusmith, Srisin, Snounou, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protective cellular immune responses depend on MHC presentation of pathogen-derived Ag fragments. MHC diversity renders this process sensitive to point mutations coding for altered amino acid sequence of the short target Ag-derived peptides epitopes. Thus, in a given host, a pathogen with an altered epitope sequence will be more likely to escape detection and elimination by the immune system. At a population level, selection by immune pressure will increase the likelihood of polymorphism in important pathogen antigenic epitopes. This mechanism of immune evasion is found in viruses and other pathogens. The detection of polymorphic hot spots in an Ag is often taken as a strong indication of its role in protective immunity. We provide evidence that polymorphisms in the T cell epitopes of a malaria vaccine candidate are unlikely to have been selected by immune pressure in the human host.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.175.6.3935