Cellular Uptake of Gold Nanoparticles Passivated with BSA−SV40 Large T Antigen Conjugates
Internalization and subcellular localization in HeLa cells of gold nanoparticles modified with the SV40 large T antigen were quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). Internalization was monitored as a function of incubation time, temperature, nanoparticle...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2007-12, Vol.79 (23), p.9150-9159 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Internalization and subcellular localization in HeLa cells of gold nanoparticles modified with the SV40 large T antigen were quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). Internalization was monitored as a function of incubation time, temperature, nanoparticle diameter, and large T surface coverage. Increasing the amount of large T peptides per gold nanoparticle complex, by either increasing the coverage at constant nanoparticle diameter or by increasing the nanoparticle diameter at constant large T coverage, resulted in more cellular internalization. In addition, nuclear fractionation was performed to quantify nuclear localization of these complexes as a function of large T coverage. In contrast to our prior qualitative investigations of nuclear localization by video-enhanced color differential interference contrast microscopy (VEC-DIC), ICP-OES was able to detect nanoparticles inside fractionated cell nuclei. Although increasing the large T coverage was found to afford higher cell internalization and nuclear targeting, quantitative evaluation of cytotoxicity revealed that higher large T coverages also resulted in greater cytotoxicity. The ICP-OES and nuclear fractionation techniques reported here are valuable tools that can add important quantitative information to optical and electron imaging methods such as VEC-DIC and transmission electron microscopy regarding the fate of nanoparticles in cells. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac0715524 |