Free Fatty Acid-Induced Reduction in Glucose-Stimulated Insulin Secretion : Evidence for a Role of Oxidative Stress In Vitro and In Vivo
An important mechanism in the pathogenesis of type 2 diabetes in obese individuals is elevation of plasma free fatty acids (FFAs), which induce insulin resistance and chronically decrease beta-cell function and mass. Our objective was to investigate the role of oxidative stress in FFA-induced decrea...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2007-12, Vol.56 (12), p.2927-2937 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important mechanism in the pathogenesis of type 2 diabetes in obese individuals is elevation of plasma free fatty acids (FFAs), which induce insulin resistance and chronically decrease beta-cell function and mass. Our objective was to investigate the role of oxidative stress in FFA-induced decrease in beta-cell function.
We used an in vivo model of 48-h intravenous oleate infusion in Wistar rats followed by hyperglycemic clamps or islet secretion studies ex vivo and in vitro models of 48-h exposure to oleate in islets and MIN6 cells.
Forty-eight-hour infusion of oleate decreased the insulin and C-peptide responses to a hyperglycemic clamp (P < 0.01), an effect prevented by coinfusion of the antioxidants N-acetylcysteine (NAC) and taurine. Similar to the findings in vivo, 48-h infusion of oleate decreased glucose-stimulated insulin secretion ex vivo (P < 0.01) and induced oxidative stress (P < 0.001) in isolated islets, effects prevented by coinfusion of the antioxidants NAC, taurine, or tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl). Forty-eight-hour infusion of olive oil induced oxidative stress (P < 0.001) and decreased the insulin response of isolated islets similar to oleate (P < 0.01). Islets exposed to oleate or palmitate and MIN6 cells exposed to oleate showed a decreased insulin response to high glucose and increased levels of oxidative stress (both P < 0.001), effects prevented by taurine. Real-time RT-PCR showed increased mRNA levels of antioxidant genes in MIN6 cells after oleate exposure, an effect partially prevented by taurine.
Our data are the first demonstration that oxidative stress plays a role in the decrease in beta-cell secretory function induced by prolonged exposure to FFAs in vitro and in vivo. |
---|---|
ISSN: | 0012-1797 1939-327X |
DOI: | 10.2337/db07-0075 |