Population structure and stock identification of Eulachon (Thaleichthys pacificus), an anadromous smelt, in the pacific northwest
The genetic structure of eulachon (Thaleichthys pacificus) populations was examined in an analysis of variation of 14 microsatellite loci representing approximately 1900 fish from 9 sites between the Columbia River and Cook Inlet, Alaska. Significant genetic differentiation occurred among the putati...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2005-08, Vol.7 (4), p.363-372 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The genetic structure of eulachon (Thaleichthys pacificus) populations was examined in an analysis of variation of 14 microsatellite loci representing approximately 1900 fish from 9 sites between the Columbia River and Cook Inlet, Alaska. Significant genetic differentiation occurred among the putative populations. The mean F(ST) for all loci was 0.0046, and there was a significant correlation between population genetic differentiation (F(ST)) and geographic distance. Simulated mixed-stock samples comprising populations from different regions suggested that variation at microsatellite loci provided reasonably accurate estimates of stock composition for potential fishery samples. Marine sampling indicated that immature eulachons from different rivers, during the 2 to 3 years of prespawning life in offshore marine waters, do not mix thoroughly. For eulachons captured incidentally in offshore trawl fisheries, there was a clear geographic cline in relative abundance of eulachons from different geographic areas. The sample from northern British Columbia was dominated by northern and central coastal populations of British Columbia, the sample from central British Columbia was composed of eulachons from all regions, and the sample from southern British Columbia was dominated by Columbia River and Fraser River populations. These results have implications for the management of trawl fisheries and conservation of spawning populations in some rivers where abundance is at historically low levels. |
---|---|
ISSN: | 1436-2228 1436-2236 |
DOI: | 10.1007/s10126-004-4075-0 |