Expression of PrP(C) in the rat brain and characterization of a subset of cortical neurons

The cellular prion protein (PrP(C)) is a membrane-bound glycoprotein mainly present in the CNS. The scrapie prion protein (PrP(Sc)) is an isoform of PrP(C), and it is responsible for transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative diseases affecting both humans and ani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2005-09, Vol.1056 (1), p.10-21
Hauptverfasser: Moleres, Francisco J, Velayos, José L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cellular prion protein (PrP(C)) is a membrane-bound glycoprotein mainly present in the CNS. The scrapie prion protein (PrP(Sc)) is an isoform of PrP(C), and it is responsible for transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative diseases affecting both humans and animals. The presence of the cellular form is necessary for the establishment and further evolution of prion diseases. Here, we map the regional distribution of PrP(C) in the rat brain and study the chemical nature of these immunopositive neurons. Our observations are congruent with retrograde transport of prions, as shown by the ubiquitous distribution of PrP(C) throughout the rat brain, but especially in the damaged areas that send projections to primarily affected nuclei in fatal familial insomnia. On the other hand, the presence of the cellular isoform in a subset of GABAergic neurons containing calcium-binding proteins suggests that PrP(C) plays a role in the metabolism of calcium. The lack of immunostaining in neurons ensheathed by perineuronal nets indicates that prions do not directly interact with components of these nets. The destruction of these nets is more likely to be the consequence of a factor needed for prions during the early stages of TSEs. This would cause destruction of these nets and death of the surrounded neurons. Our results support the view that destruction of this extracellular matrix is caused by the pathogenic effect of prions and not a primary event in TSEs.
ISSN:0006-8993
DOI:10.1016/j.brainres.2005.06.067