Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation

This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white nois...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2005-09, Vol.61 (3), p.781-788
Hauptverfasser: Golightly, A., Wilkinson, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. The estimation framework involves the introduction of m− 1 latent data points between every pair of observations. MCMC methods are then used to sample the posterior distribution of the latent process and the model parameters. The methodology is applied to the estimation of parameters in a prokaryotic autoregulatory gene network.
ISSN:0006-341X
1541-0420
DOI:10.1111/j.1541-0420.2005.00345.x