A Peptide-gated Ion Channel from the Freshwater Polyp Hydra

Chemical transmitters are either low molecular weight molecules or neuropeptides. As a general rule, neuropeptides activate only slow metabotropic receptors. To date, only one exception to this rule is known, the FMRFamide-activated Na+ channel (FaNaC) from snails. Until now FaNaC has been regarded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2007-11, Vol.282 (48), p.35098-35103
Hauptverfasser: Golubovic, Andjelko, Kuhn, Anne, Williamson, Michael, Kalbacher, Hubert, Holstein, Thomas W., Grimmelikhuijzen, Cornelis J.P., Gründer, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical transmitters are either low molecular weight molecules or neuropeptides. As a general rule, neuropeptides activate only slow metabotropic receptors. To date, only one exception to this rule is known, the FMRFamide-activated Na+ channel (FaNaC) from snails. Until now FaNaC has been regarded as a curiosity, and it was not known whether peptide-gated ionotropic receptors are also present in other animal groups. Nervous systems first evolved in cnidarians, which extensively use neuropeptides. Here we report cloning from the freshwater cnidarian Hydra of a novel ion channel (Hydra sodium channel, HyNaC) that is directly gated by the neuropeptides Hydra-RFamides I and II and is related to FaNaC. The cells expressing HyNaC localize to the base of the tentacles, adjacent to the neurons producing the Hydra-RFamides, suggesting that the peptides are the natural ligands for this channel. Our results suggest that neuropeptides were already used for fast transmission in ancient nervous systems.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M706849200