Heat shock protein 90 acts as a molecular chaperone in late-phase activation of extracellular signal-regulated kinase 1/2 stimulated by oxidative stress in vascular smooth muscle cells

Aim: To investigate whether cytosolic heat shock protein 90 (HSP90) acts as a molecular chaperone on the activated extracellular signal-regulated kinase 1/2 (ERK1/2) and cell proliferation stimulated by reactive oxygen species (ROS) in rat vascular smooth muscle cells (VSMC). Methods: VSMC were expo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2007-12, Vol.28 (12), p.1907-1913
Hauptverfasser: Liu, Dai-hua, Yuan, Hao-yu, Cao, Chun-ya, Gao, Zhi-ping, Zhu, Bing-yang, Huang, Hong-lin, Liao, Duan-fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: To investigate whether cytosolic heat shock protein 90 (HSP90) acts as a molecular chaperone on the activated extracellular signal-regulated kinase 1/2 (ERK1/2) and cell proliferation stimulated by reactive oxygen species (ROS) in rat vascular smooth muscle cells (VSMC). Methods: VSMC were exposed to 1 pmol/L LY83583 (6-anilinoquinoline-5,8-quinolinedione, producer of ROS) for 120 min in the presence or absence of 5 μmol/L geldanamycin, a specific inhibitor of HSP90. Then the total, soluble, and insoluble proteins of the cells were collected. HSP90, ERK1/2, and phosphor-ERK 1/2 in the cell lysate were measured by Western blotting. The interaction of HSP90 and phosphor-ERK1/2 was analyzed by immunoprecipi- tation assay, and the nuclear phosphor-ERK1/2 was measured by Western blot- ting and immunofluorescence. Cell proliferation was tested by cell counting and 3-(4,5-dimethylthiazol-2-yl)-3,5-di-phenyltetrazoliumbromide (MTT). Results: The cytosolic HSP90 of VSMC was upregulated by LY83583 in a time-dependent man- ner with the peak at 120 min, which is consistent with the late peak of phosphor- ERK1/2. Immunoprecipitation and Western blotting analyses showed that LY83583 increased the interaction of HSP90 with phosphor-ERK1/2, the phosphor-ERK1/2 level, and the soluble phosphor-ERK1/2 level by 1.8-, 2.5-, and 2.9-fold, respectively. In contrast, the insoluble phosphor-ERK1/2 of VSMC was decreased. Interestingly, LY83583 treatment promoted the nuclear phosphor-ERK1/2 by 7.6-fold as con- firmed by Western blotting and immunofluorescence assays. Furthermore, cell counting and the MTT assay showed that LY83583 stimulated VSMC prolifera- tion with the increased expression of HSP90 and levels of soluble and nuclear phosphor-ERK1/2. Pretreatment of geldanamycin antagonized the effect of LY83583. Conclusion: HSP90 could mediate the oxidative stress-stimulated, late- phase activation of ERK1/2 and VSMC proliferation by promoting the ERK1/2 phosphorylation, the association of itself with phosphor-ERK1/2, and the solubil- ity and nuclear translocation of phosphor-ERK 1/2.
ISSN:1671-4083
1745-7254
DOI:10.1111/j.1745-7254.2007.00702.x