Making Thiamin Work Faster:  Acid-Promoted Separation of Carbon Dioxide

The conjugate of thiamin and benzoylformate, mandelylthiamin (MTh), undergoes decarboxylation about 106 times slower than the analogous enzymic intermediate. It has now been discovered that the decarboxylation of MTh is accelerated by the acid component of pyridine and 4-picoline buffers. There is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-09, Vol.127 (35), p.12242-12243
Hauptverfasser: Hu, Qingyan, Kluger, Ronald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conjugate of thiamin and benzoylformate, mandelylthiamin (MTh), undergoes decarboxylation about 106 times slower than the analogous enzymic intermediate. It has now been discovered that the decarboxylation of MTh is accelerated by the acid component of pyridine and 4-picoline buffers. There is no role for a proton donor to stabilize the transition state for decarboxylation:  catalysis must be achieved by the acid's trapping the product carbanion, preventing recarboxylation. This requires that diffusion of CO2 is rate-determining, and that protonation of the carbanion allows this to occur. This interpretation correctly predicts that the same acid components will prevent a fragmentation reaction by protonating the intermediate, which fragments only as the conjugate base.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja054165p