self-incompatibility locus (S) and quantitative trait loci for self-pollination and seed dormancy in sunflower

Wild populations of common sunflower (Helianthus annuus L.) are self-incompatible and have deep seed dormancy, whereas modern cultivars, inbreds, and hybrids are self-compatible and partially-to-strongly self-pollinated, and have shallow seed dormancy. Self-pollination (SP) and seed dormancy are gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2005-08, Vol.111 (4), p.619-629
Hauptverfasser: Gandhi, S.D, Heesacker, A.F, Freeman, C.A, Argyris, J, Bradford, K, Knapp, S.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wild populations of common sunflower (Helianthus annuus L.) are self-incompatible and have deep seed dormancy, whereas modern cultivars, inbreds, and hybrids are self-compatible and partially-to-strongly self-pollinated, and have shallow seed dormancy. Self-pollination (SP) and seed dormancy are genetically complex traits, the number of self-compatibility (S) loci has been disputed, and none of the putative S loci have been genetically mapped in sunflower. We genetically mapped quantitative trait loci (QTL) for self-incompatibility (SI), SP, and seed dormancy in a backcross population produced from a cross between an elite, self-pollinated, nondormant inbred line (NMS373) and a wild, self-incompatible, dormant population (ANN1811). A population consisting of 212 BC1 progeny was subsequently produced by backcrossing a single hybrid individual to NMS373. BC1 progeny produced 0-838 seeds per primary capitula when naturally selfed and 0-518 seeds per secondary capitula when manually selfed and segregated for a single S locus. The S locus mapped to linkage group 17 and was tightly linked to a cluster of previously identified QTL for several domestication and postdomestication traits. Two synergistically interacting QTL were identified for SP among self-compatible (ss) BC1 progeny (R2=34.6%). NMS373 homozygotes produced 271.5 more seeds per secondary capitulum than heterozygotes. Germination percentages of seeds after-ripened for 4 weeks ranged from 0% to 100% among self-compatible BC1S1 families. Three QTL for seed dormancy were identified (R2=38.3%). QTL effects were in the predicted direction (wild alleles decreased self-pollination and seed germination). The present analysis differentiated between loci governing SI and SP and identified DNA markers for bypassing SI and seed dormancy in elite x wild crosses through marker-assisted selection.
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-005-1934-7